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There is growing interest in the relationship between bone marrow fat (BMF) and skeletal health. Progress in
clinical studies of BMF and skeletal health has been greatly enhanced by recent technical advances in our ability
to measure BMF non-invasively. Magnetic resonance imagery (MRI) with or without spectroscopy is currently
the standard technique for evaluating BMF content and composition in humans. This review focuses on clinical
studies of marrow fat and its relationship with bone.
The amount ofmarrow fat is associatedwith bonemineral density (BMD). Several studies have reported a signif-
icant negative association between marrow fat content and BMD in both healthy and osteoporotic populations.
Theremay also be a relationship betweenmarrow fat and fracture (mostly vertebral fracture), but data are scarce
and further studies are needed. Furthermore, a few studies suggest that a lower proportion of unsaturated lipids
in vertebral BMF may be associated with reduced BMD and greater prevalence of fracture. Marrow fat might be
influenced by metabolic diseases associated with bone loss and fractures, such as diabetes mellitus, obesity and
anorexia nervosa. An intriguing aspect of bariatric (weight loss) surgery is that it induces bone loss and fractures,
but with different impacts on marrow fat depending on diabetic status.
In daily practice, the usefulness for clinicians of assessingmarrow fat usingMRI is still limited. However, the per-
spectives are exciting, particularly in terms of improving the diagnosis andmanagement of osteoporosis. Further
studies are needed to better understand the regulators involved in the marrow fat-bone relationship and the
links between marrow fat, other fat depots and energy metabolism.

© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

With the increase in population age and the prevalence of obesity, it
is important to understand the relationship between adipose tissue and
bone mass, bone quality and fractures [1,2]. Greater body weight or
body fat mass are known to have a positive effect on bonemineral den-
sity (BMD), but obesity is not always protective against fractures
(e.g., ankle and lower limb fractures). Furthermore, the association be-
tween fractures and obesity seems to be site-dependent [3–5]. The con-
nection between fat and bone is complex since the associations
between adiposity and bone are age-, gender-, menopausal status-, ad-
ipose depot- and bone compartment-specific [6,7].

In the past decade, a new approach to evaluating the bone-fat rela-
tionship has emerged, focusing on bonemarrow adiposity (BMA). Mar-
row adiposity is a specific fat depot—with properties distinct from those
of other fat depots—found in bone cavities in the immediate vicinity of
sites of bone remodeling activity. In addition, marrow adiposity and
pital Roger Salengro, Rue Emile
bone are increasingly recognized as being capable of mutual regulation
[8,9]. As imaging techniques become more sophisticated, the role of
marrow adiposity on skeletal health can be studied directly and non-
invasively. As such, BMA can now be quantified non-invasively using
magnetic resonance imaging (MRI), either with or without spectros-
copy [10,11]. Moreover, whereas the term “bone marrow fat” (BMF) is
used in MRI studies, BMA is used in bone histomorphometric studies
and as a general term referring to fat inside the bones. Using MRI with
spectroscopy (MRS) in combination with dual energy x-ray absorpti-
ometry (DXA), several studies have reported an association between
BMF and BMD in patients with osteoporosis, as well as in populations
of individuals with metabolic diseases such as obesity and diabetes
mellitus [12–15]. It is conceivable therefore, that marrow adiposity
may be driving bone loss—at least in part—and contributing to osteopo-
rosis [6]. However, during puberty, both marrow fat and osteoblast dif-
ferentiation increase, suggesting that marrow fat may be necessary for
osteoblasts to produce new bone.

This review focuses on the knowledge available tomedical bone spe-
cialists regarding the usefulness of bone marrow fat evaluations and
their applications in the management of osteoporosis. Furthermore,
this article review draws on animal data to fill in the gaps where
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human data are unavailable, and to provide some mechanistic insights
which may be relevant for the results from human studies. Due to re-
strictions on the length of the reference list, the reader is also referred
to other reviews by our team on the same topic (16,17).

2. Bone marrow fat variations with age, sex and menopause

At birth, bone cavities are filled mainly with red hematopoietic mar-
row. During childhood, redmarrow is gradually replaced by fatty yellow
marrow [18]. Despite wide individual variations, there is, globally, a
positive correlation between BMF and age [19,20]. Kugel et al. reported
an age-related increase in vertebral BMF in both males and females,
with males having approximately 6–10%more fat than females of com-
parable age between the ages of 20 and 60 years [21]. Thereafter, verte-
bral BMF increases sharply in females between 55 and 65 years of age,
i.e., in the years followingmenopause [22]. In males, vertebral BMF con-
tent rose gradually throughout life. Vertebral BMF content in females
over 60 years of age was approximately 10% higher than in males,
pointing to a reversal of the sex difference in BMF content reported in
subjects aged b60 years [21,22].

3. Bone marrow fat evaluation using MRI

Historically, clinical measures of marrow adiposity required a bone
biopsy. Progress in clinical studies of BMA and skeletal health has
been greatly enhanced by recent technical advances in our ability to
measure marrow fat non-invasively using MRI [10]. Three techniques
have been used to evaluate BMF content, namely magnetic resonance
spectroscopy (MRS), T1-weighted MRI and the Dixon method. For
these three techniques, results are expressed as a percentage. Satisfying
correlations have been found between the three methods [23].
Fig. 1. Evaluation of bonemarrow fat using MRI with spectroscopy. The resulting spectrum sho
residual lipids (RL). Adapted from [11].
Most of the recent clinical studies on the relationship between BMD
and BMF have used MRS to analyse separate water and fat signals of
BMF (BMF content) at the vertebrae or hip [24,25], with or without
MR perfusion imaging (to assess BMF perfusion) [26,27]. MRS has also
been used to measure lipid saturation (BMF composition, i.e., the pres-
ence and type of hydrogen bindings) in bonemarrow [14]. The resulting
spectrum shows peaks corresponding to water, saturated lipids, unsat-
urated lipids and residual lipids (Fig. 1) [11,14,28]. In MRS measure-
ments, BMF is expressed as a percentage. To evaluate vertebral BMF,
the measurement is acquired on one or more of the lumbar vertebral
bodies (L1–L4). A single voxel is placed in the centre of the vertebral
body [10]. The percentage of BMF is calculated using the large lipid
peak at 1.3 ppm (ppm) (saturated lipids or SL), disregarding the much
smaller lipid peaks at 5.3 (unsaturated lipids or UL) and 2.0 (residual
lipids or RL) [10]. Fat content is then calculated as: fat content(%) =
[(Ifat/(Ifat + Iwater)] × 100%. Furthermore, BMF content has also
been reported using three of these lipid peaks [28]. In that case, fat con-
tent is calculated as: fat content (%) = [(IUL + IRL + ISL)/(IUL + IRL
+ ISL+ Iwater)] × 100%. With MRS, it is also possible to assess the de-
gree of lipid saturation in marrow [28]. The unsaturation index is then
calculated as: UL (%) = [IUL/(IUL + IRL + ISL)] × 100%. The saturation
index can also be calculated as: SL (%) = [ISL/(IUL + IRL + ISL)]
× 100%. To date, there is currently no standardized protocol for BMF im-
aging using MRI with or without spectroscopy.

Finally, peripheral quantitative computed tomography (pQCT) has
been used to assess marrow fat density at the tibia (mg/cm3), but this
technique requires exposure to relatively high levels of radiation [29].
Thus, further studies are needed to determine valid and reliable
methods for measuring marrow adiposity with greater precision using
pQCT or QCT, and a validation study should be conducted through com-
parison with MRI.
ws 4 peaks corresponding to water (W), saturated lipids (SL), unsaturated lipids (UL) and



10 J. Paccou et al. / Bone 118 (2019) 8–15
4. Bone marrow fat and bone mineral density by DXA: an inverse
relationship

In most clinical studies in healthy populations, BMF has been mea-
sured using T1-weighted whole-body MRI. Several studies have re-
ported a significant negative association between BMF content and
BMD in healthymen [15,30] andwomen [13,15,30]. In a study including
560 healthy men and women (younger group, age 18.0–29.9 years;
older group, age 50.0–88 years), Shen et al. observed an inverse rela-
tionship between BMF and BMD in an anatomically matched region
(i.e., pelvic BMF and pelvic BMD), a non-anatomically matched region
(i.e., pelvic BMF and spine BMD), and regional andwhole-body (i.e. pel-
vic BMF and whole body BMD), after adjusting for body composition
[30].

Higher BMF content asmeasured byMRShas been found in osteopo-
rotic populations vs. osteopenic/normal populations. These findings
have been reported in Chinese men and women aged 55 years and
older when compared to those with low (osteopenic) or normal BMD
matched for age [24,25]. More recently, in 51 postmenopausal women
(54–73 years), BMF content measured by MRS was found to be
significantly higher in patients with osteoporosis/osteopenia compared
with controls, after adjustment for age and bodymass index (BMI) (p
b 0.05) [11]. Similar results were found in 78 postmenopausal
women (55–81 years) [31]. However, all these results were obtained
in Chinese populations [11,24,25,31] and data in Caucasian
populations are scarce.

It is important to note that the inverse relationship between BMF
and BMD is more than just a statistical association. As BMF increases,
there are also histologic changes within fat tissue assessed by bone
biopsy [32,33]. However, the general statement that the amount of
marrow fat is always associated with BMD should be qualified.
Indeed, there is no evidence to suggest that direct reciprocal
relationship exists between marrow fat and bone during puberty or
after bariatric surgery.

5.Marrow fat, volumetric BMD and bonemicroarchitecture: beyond
DXA, measurements of bone using single energy quantitative com-
puted tomography

Although bone density assessed by DXA is a robust predictor of frac-
ture risk, DXA measurements provide only areal estimates of density,
and since DXA cannot distinguish cortical and trabecular bone, the tech-
nique is limited. Quantitative computed tomography (QCT) measure-
ments of bone (spine and hip) can provide insights into the aspects of
bone that are associated with marrow adiposity. In the Iceland AGES-
Reykjavik cohort, higher marrow fat was found to be associated with
lower trabecular spine, total hip and femoral neck—but not cortical—
volumetric BMD (vBMD) in older women [34]. In men, there were no
statistically significant associations between BMF and vBMD (both tra-
becular and cortical) either at spine, total hip or femoral neck [34]. In an-
other study involving women (13 healthy participants and 13 diabetics
patients), mean vertebral BMF (L1-L3, %) was found to correlate in-
versely with trabecular spine vBMD (L1-L3, mg/ml) in healthy partici-
pants (−0.578; p = 0.049) [14]. Bredella et al. [35] found that
vertebral BMF as measured by MRS also correlated inversely with tra-
becular spine vBMD (r = −0.39, p = 0.007) in 47 premenopausal
women of various BMIs (range: 18–41 kg/m2, mean 30 ± 7 kg/m2),
and the correlation remained significant after controlling for visceral ad-
ipose tissue (VAT) (p = 0.03).

Data on peripheral QCT (pQCT)measurements of bone (distal radius
and tibia) and their relationships with BMF content are scarce. Sheu
et al. [36] found no correlation between BMF and trabecular and cortical
BMD in 118 non-diabetic elderlymen (80.6±4.6) involved in theMrOS
study.

In a cross-sectional study, 35 obese men (mean age, 33.8 ±
6.4 years; mean BMI, 36.5 ± 5.8 kg/m2) were included to evaluate
determinants of bone microarchitecture assessed using high resolu-
tion peripheral QCT (HR-pQCT) of the distal radius [37]. Vertebral
BMF content assessed by MRS correlated inversely with cortical
vBMD (r = −0.42, p = 0.02), cortical area (r = −0.45, p = 0.01)
and trabecular thickness (r = −0.38, p = 0.03), and the correlation
remained significant after controlling for lumbar BMD assessed by
DXA (p b 0.04) [37]. No data were available regarding distal tibia.

Finally, although published data are scarce and difficult to
compare, higher vertebral BMF content seems to be associated with
lower trabecular spine vBMD assessed using QCT in women.
Additional studies are needed to better evaluate the relationship
between BMF, vBMD and microarchitecture assessed by pQCT and
HR-pQCT.

6. Marrow fat and fracture: Data are scarce

Little data are available on the relationship between marrow
adiposity and fractures. Previous studies have reported an
association between prevalent vertebral fractures and higher bone
marrow adiposity assessed by iliac crest biopsy [32] and BMF content
assessed using MRS [20]. Some human imaging studies suggest that
alterations in BMF assessed using MRS may contribute to “bone
weakness” (prominent Schmorl's nodes, endplate depression,
vertebral wedging, and vertebral compression) independently of
BMD [38,39]. Moreover, marrow adiposity parameters measured by
iliac crest biopsy (number, size and volume of adipocytes) were
found to be higher in 64 premenopausal women with idiopathic
osteoporosis (defined by low-trauma fractures (n = 45) or low
BMD (n = 19)) versus 40 controls, after adjustment for age and
BMI [40].

More recently, in a cohort of 257older adults (118men, 139women;
mean age 79 years (SD 3.1)), thosewith prevalentmorphometric verte-
bral fractures (21 men, 32 women) had higher mean BMF (57.3% vs.
53.6%, P = 0.003) in models adjusted for age and gender. However, no
associationwas found between BMF content and history of clinical frac-
tures (all fractures) or analyses limited to fragility fractures (hip, proxi-
mal humerus, and clinical spine) either in men or women [41]. In a
study reported by Patsch et al. [28], no association was found between
low-trauma fractures and BMF content in a cohort of 69 diabetic and
non-diabetic postmenopausal women (with or without fragility frac-
ture; n = 33 versus n = 36).

Radiographic vertebral fractures might be associated with higher
BMF content independently of BMD [38,39,41]. To date, no prospective
studies evaluating the relationship between BMF and fractures are
available.

7. Lipid composition of marrow fat: association with bone density
and fracture?

Marrow fat composition and content may be relevant for skeletal
health. The relative amounts of saturated and unsaturated lipids in
marrow fat can be measured non-invasively with MRS, thereby
providing a means of evaluating this aspect of BMF composition. A
few studies suggest that a lower proportion of unsaturated lipids in
vertebral marrow fat may be associated with reduced BMD [25]
and greater prevalence of fracture [28].

In a study conducted by Yeung et al. [25] involving 50 post-
menopausal women (66–81 years) and 12 controls (18–43 years),
the fat unsaturation index was significantly lower in osteoporotic
(0.091 ± 0.013) and osteopenic (0.097 ± 0.014) subjects compared
to normal subjects (0.114 ± 0.016) and young controls (0.127 ±
0.031). Moreover, an inverse correlation was observed between the
fat content and the unsaturation index (r = −0.53, P b 0.0001).
These results were confirmed in another study conducted by Li
et al. using a new imaging technique permitting the evaluation of
marrow fat composition ex vivo [42]. Bone marrow samples were
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obtained by iliac crest aspiration during surgical procedures. In a
cohort of 24 postmenopausal women (65–89 years), subjects with
lower BMD (n = 17, osteopenic and osteoporotic subjects together)
had significantly lower mono-unsaturated and unsaturated levels (p
= 0.003 and p = 0.039 respectively) compared to controls (n = 7)
using ex vivo high-resolution magic angle spinning proton nuclear
MRS [42].

Patsch et al. [28] evaluated the association between vertebral BMF
and fragility fractures in 69 diabetic and non-diabetic postmenopausal
women. In their study, no association was found between fragility frac-
tures and vertebral BMF content as previously mentioned. However, an
association was found with low BMF unsaturation levels (−1.7% [95%
CI: -2.8% to −0.5%], p = 0.005), independently of age, race, and spine
vBMD.
8. Marrow fat, obesity and other fat depots: Data are lacking or
inconsistent

An important area of clinical investigation would be to consider the
relationship between marrow fat and other fat depots such as total
body, visceral and subcutaneous fat. To our knowledge, only one study
has explored the relationship between obesity and BMF content and
composition. Bone marrow fat content and unsaturation index were
similar in obese (n = 23) and non-obese (n = 27) premenopausal
women (38.5 ± 0.1 vs. 38.6 ± 0.1%, p = 0.994; 0.162 ± 0.065 vs.
0.175± 0.048, p=0.473, respectively) [43]. Data are lacking regarding
the relationship between marrow fat and total body and subcutaneous
fat, and the relationship betweenmarrow fat and visceral fat appears to
be inconsistent. Indeed, some, but not all, studies [44,45] have reported
a positive association betweenmarrow fat and visceral fat [35]. Positive
correlations between BMF and visceral fat (r=0.34; p=0.02)were re-
ported in 23 obese premenopausal women (body mass index: 34.4 ±
4.9 kg/m2) (Fig. 2) [35]. However, in other studies, no such association
was found [44,45], or the authors used CT [46] or T1-weighted MRI
[15], neither of which is in keeping with the current standard practice
for evaluating marrow fat. Consequently, further studies are needed
to effectively evaluate the relationship between marrow fat and
other fat depots using MRS or the Dixon method at the lumbar
spine in homogeneous populations of obese and non-obese men
and women.
Fig. 2. Relationship between marrow fat and visceral fat i
9. Weight loss, anorexia nervosa and bariatric surgery: What about
marrow fat?

9.1. Weight loss

Several studies have examined the longitudinal effects of weight loss
on BMD in humans and confirmed a reduction in bone mass [47,48].
However, studies on the longitudinal effect of weight loss on BMF in
humans are scarce [49]. Cordes et al. [50] did not find a change in mar-
row fat in 20 obese postmenopausalwomen during a 4-week diet inter-
vention (800 kcal per day; mean weight loss 7%), although a decrease
was observed in other fat depots (e.g. visceral fat, subcutaneous fat…).

9.2. Anorexia nervosa

Anorexia nervosa (AN) is a serious disorder—with non-negligible
rates of mortality and morbidity—which can affect bone tissue with a
loss in bone mass [51,52]. Studies have shown that BMF content in-
creases in AN [53,54]. The most notable finding is that, despite a severe
depletion of body fat (both VAT and SAT), AN is associated with an in-
crease in BMF content (as measured by MRS) [53,54]. Women with
AN (n = 10, 29.8 ± 7.6 years) have higher lumbar and femoral BMF
content levels than normal-weight age-matched controls (n = 10,
29.2 ± 5.2 years), and BMF content correlates inversely with BMD
assessed using DXA after controlling for BMI [53]. In a study focusing
on BMF composition assessed using MRS, similar BMF composition
measurements were found in patients with AN (n = 14, age 29.5 ±
1.9 years) compared to 12 age-matched normal-weight controls [54].
This paradoxical increase in marrow fat at a time when SAT and VAT
are markedly reduced raises important questions about the functional
consequences of this process. These changesmay represent a protective
compensatory mechanism for skeletal health. Moreover, in women
with anorexia nervosa, marrow fat decreases and then returns to levels
comparable to those found in healthy controls, highlighting the issue of
reversibility of marrow adiposity [55].

9.3. –Bariatric surgery

Bariatric surgery procedures provide the most effective and lasting
weight-loss strategy for the treatment of severe obesity, but the clinical
impact on BMD and fractures may be detrimental [56,57]. In a recent
n obese premenopausal women. Adapted from [35].
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study, Roux-en-Y gastric bypass (RYGB) surgerywas found to be associ-
ated with a 43% increase in the risk of nonvertebral fracture compared
with adjustable gastric banding [58].

In a pilot study involving morbidly obese diabetic (n= 6) and non-
diabetic women (n=5) undergoing RYGB surgery, Schafer et al. exam-
ined the effects of RYGB on vertebral BMF content using MRS [59]. Six
months post-operatively, in those without diabetes, BMF was main-
tained on average after RYGB (+0.9%), despite dramatic declines in
overall fat mass. In those with diabetes, RYGB significantly reduced
BMF content (−7.5% [95% CI: −15.2 to +0.1%], p = 0.05) [59]. With
an extended cohort of 30 women (14 women with diabetes and 16
without), the same team examined vertebral BMF content and BMD
changes over a period of 6 months post-RYGB [45]. Participants lost a
mean 27.3 ± 6.8 kg in weight and 19.3 ± 4.8 kg in total body fat. In
the women with diabetes, RYGB significantly reduced BMF content (−
6.5% [95% CI: −13.1 to 0%], p = 0.05), whereas in the non-diabetic
women, BMF content was stable (+1.8% [95% CI −1.8 to +5.4%], p =
0.29). In the cohort overall (diabetic and non-diabetic women), greater
declines in HbA1C were associated with declines in marrow fat (r =
0.50, p = 0.01). Not only was marrow fat content associated with
spine vBMD at baseline (r=−0.72, p b 0.01), but longitudinal changes
in marrow fat content and spine vBMDwere also inversely related (r=
−0.58, p b 0.01) (Fig. 3) [45]. However, the skeletal effects of bariatric
surgery are complex and, in another bariatric study, the authors did
not report any changes in BMF content in subgroups of participants
who had had RYGB, although they did find an association between
sleeve gastrectomy and an increase in marrow fat [60].
10. Diabetes, skeletal health and marrow fat: possible gender
differences

Diabetes is an independent risk factor for fragility fractures at skele-
tal sites such as the hip, spine, and distal forearm [61–63]. Only a small
number of studies have investigated marrow fat content and composi-
tion in patients with diabetes mellitus compared to non-diabetes pa-
tients. The literature suggests that diabetes may be a state of elevated
BMF content.

Intriguingly, this relationship may differ by gender. Indeed, in a
study involving 13 postmenopausal women with diabetes mellitus
and 13 age- and body mass index-matched healthy controls, BMF was
similar in the diabetic women and healthy controls, whereas
Fig. 3. Correlation between vertebral marrow fat content and vertebral volumetric BMD
with 6-month changes in diabetic (dark circles) and nondiabetic populations (white
squares) Adapted from [45].
unsaturation levels were significantly lower in the diabetic group [14].
Similar results were reported by Patsch et al., who found no association
between diabetic status and BMF content in a cohort of 69 postmeno-
pausal women (mean age 63 ± 5 years), whereas diabetes was associ-
ated with lower unsaturation levels [28]. Kim et al. [45] did not
identify higher marrow fat content in diabetic versus nondiabetic
women.

Sheu et al. [36] found that BMF content was higher in men with dia-
betes than thosewithout (59.2± 3.5 vs. 54.8 ± 3.3, p=0.036), but this
result did not remain significant after excluding 2 men receiving
thiazolidinediones. No BMF composition measurements were available
in this study.

Furthermore, in womenwith diabetes mellitus, higher HbA1c levels
were associated with higher BMF content, suggesting that BMF may in-
fluence or may be influenced by glucose metabolism and glycemic con-
trol [14]. This result was confirmed in another study conducted by Yu
et al. [44] at the lumbar spine (r = 0.61; p = 0.004) and femoral
metaphysis (r = 0.47; p = 0.03) (Fig. 4). Furthermore, BMF content
was found to correlate negatively with insulin and HOMA-IR (r = −
0.342, r = −0.352, respectively, p = 0.01) in 50 obese (n = 23) and
non-obese (n = 27) premenopausal women, confirming the link be-
tween glucose metabolism and marrow adiposity [43].

11. Osteoporosis treatments decrease marrow adiposity

Increased bonemarrow adiposity in postmenopausal womenmight
be due, at least in part, to estrogen deficiency [22]. Indeed, in a cohort of
29 postmenopausal osteoporotic women, one-year transdermal estro-
gen therapy resulted in significant decreases in bonemarrow adipocyte
volume (adipocyte volume/tissue volume in bone biopsy), and
prevented the increase in adipocyte number as compared to placebo-
treated controls (n = 27) [64]. In another bone biopsy study, similar
findings—decrease in adipocyte volume/tissue volume and prevention
of the increase in adipocyte number—were observed in 24 post-
menopausal women after 3 years of risedronate (5 mg/day) compared
to placebo [65]. In a pilot study, teriparatide was administered at 20
μg daily for 18 to 24 months to 21 premenopausal women with unex-
plained fragility fractures or low BMD. After 12 months, adipocyte
area, perimeter, and volume/marrow volume, as assessed by bone biop-
sies, had decreased, with no change in adipocyte number [66]. In an-
other study, postmenopausal osteopenic women were randomly
assigned to receive teriparatide (n = 90) or placebo (n = 45) for
12 months. Teriparatide effectively lowers marrow fat assessed using
T1-weighted MRI in postmenopausal osteopenic women at 12 months
(−5.9%) (Fig. 5). However, these results should be interpreted with
two important caveats: MRI with or without spectroscopy is not able
to determine whether it is marrow adipocyte size or number, or both,
which is reduced; and PTH treatment may have an effect on lipolysis
(marrow adipocytes size, but not number, was reduced). Moreover, a
Fig. 4. Relationship between HbA1C and marrow fat in diabetic and nondiabetic
populations Adapted from [44].



Fig. 5. Influence of teriparatide administration onmarrow fat content and total hip BMD (a) p b 0.05 vs. previous time point; (b) p b 0.05 vs. baselinewithin group; (c) p b 0.05 vs. placebo
group at the same time point. Adapted from [66].
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positive association was found between marrow fat content and VAT
(r = 0.531, p = 0.008) [67].

12. Marrow adiposity variations: Effects of exercise and pharmaco-
logic agents such as rosiglitazone and glucocorticoids

12.1. Exercise

Interestingly, bone response to exercise includes changes inmarrow
adiposity, which may contribute to the beneficial effect of exercise on
bone mass [68,69]. For example, female athletes (17–40 yrs.) involved
in weight-bearing impact sports (impact group, n = 122) have lower
marrow adiposity (tibial bone marrow density assessed using pQCT)
compared with athletes involved in non-impact loading sports (non-
impact group, n = 57) and non-athletic controls (control group, n =
41) [68]. Furthermore, in all young women, marrow adiposity is a pre-
dictor of bone strength, independently of loading history, body size, or
body composition [68]. Moreover, in eight week-old female C57BL/6
mice, BMF accumulation accelerated by a high fat diet was suppressed
by exercise (voluntary access to running wheels) after 6 weeks [69].
In this study, femoral BMF was assessed by micro-scanner as well as
bone parameters, and mice were divided in regular-diet and high fat-
diet groups with or without exercise (4 groups, n=5 per group). Inter-
estingly, exercise significantly increased bone quantity in both diet
groups [69]. Taken together, these studies suggest that the beneficial ef-
fect of exercise on bone density might be mediated by a decrease in
marrow adiposity and a concomitant increase in osteoblastogenesis.

12.2. –Pharmacologic agents

Thiazolidinediones (TZDs) are oral anti-diabetes agents that act
mainly as insulin-sensitizers by activating the nuclear peroxisome
proliferator-activated receptor γ (PPARɣ). In humans, rosiglitazone – a
PPARɣ-agonist – is known to increase marrow adiposity and fracture
risk [70]. Inmice, activation of PPARɣ by rosiglitazone stimulates the dif-
ferentiation of adipocytes over osteoblasts from MSC, increases the
number of adipocytes, decreases the number of osteoblasts, and de-
creases BMD [71].

In the rabbit model of glucocorticoid-induced bone loss, there was a
remarkable increase in marrow adiposity but a reduction in BMD com-
pared with the controls. Interestingly, a single dose of early zoledronic
acid can reverse themarrowadiposity to its original level completely [72].
13. Conclusions and perspectives

Examining and understanding the link between marrow adiposity
and bone is a tremendous area of research. Findings on the associations
are consistent, particularly for BMD assessed using DXA and spine tra-
becular vBMD using QCT. However, its association with bone fractures
remains to be determined and prospective studies are needed to evalu-
ate the association between BMF and fractures, the most common clin-
ical consequence of osteoporosis. Furthering our understanding of the
mechanismof this association could lead to a better diagnostic approach
to osteoporosis.

Osteoporosis treatments (e.g. estrogen, teriparatide…) have been
found to decrease bone marrow adiposity and increase BMD. This
might be of significance for further studies focusing on populations of
individuals with metabolic diseases (e.g. diabetes, obesity, anorexia
nervosa…), in which BMF content and/or composition abnormalities
have been demonstrated.

Further studies are also needed to better understand the impact of
weight loss surgery on marrow adiposity depending on diabetic status
and type of bariatric surgery (e.g. RYGB, sleeve gastrectomy…).

Finally, the relationship between marrow fat and other fat depots
(e.g. total body fat, visceral fat…) needs to be properly evaluated.

Regarding technical issues, the priority is to standardize the protocol
for BMF imaging using MRI with or without spectroscopy. Examining
lipid composition (unsaturation level) in terms of its association with
skeletal health (e.g. BMD, fracture…) and diabetic status might also be
important.

Although the regulation of the marrow fat-bone relationship is not
completely understood, there is evidence suggesting that the GH-IGF1
axis may be involved [35,45] asmuch as adipokines such as adiponectin
[43,44,73–75]. Furthermore, bone marrow adiposity may influence or
may be influenced by glucose metabolism and glycemic control
[14,43,44].

Finally, In the Iceland AGES cohort [76], Ma et al. found that higher
circulating sclerostin was associated with higher marrow fat in men
but not women, suggesting that osteocyte activity may also influence
marrow fat.

Further research is needed to understand the mechanisms underly-
ing the marrow adiposity-bone interaction and its possible regulation
by glucose metabolism and sclerostin (Fig. 6). Ultimately, understand-
ing the role of marrow adiposity in bone metabolism could lead to the
development of strategies for the prevention and treatment of
osteoporosis.



Fig. 6. Relationships between marrow fat, bone, other fat depots and glucose metabolism.
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